

Antibiotic residue screening

Premi®Test – Microbial inhibition test for broad spectrum screening of food

• For meat, fish, shrimp, eggs and more food of animal origin • Simple to perform Results in less than 4 hours RBP 31/02 - 4/11 ALTERNATIVE ANALYTICAL METHODS FOR AGRIBUSINESS ALIDATION Certified by AFNOR Certification www.afnor-validation.com End of vadility: 30.08.2018 ANCE TESTED RESEARCH INSTITUTE LICENSE NUMBER 060601 PramilTest

Premi®Test offers easy and fast screening of antibiotic residues in food of animal origin

In livestock breeding, antibiotics are used for the treatment of bacterial infections and diseases. Additionally, antibiotics can illegaly be used as antimicrobial growth promoters (AGP). As a consequence, antibiotic residues can remain in food of animal origin and bear a health risk for the consumers.

The Premi®Test antibiotic residue screening test detects a broad spectrum of the most veterinary used antibiotics in animal husbandry. The easyto-implement and easy-to-use test enables on-site screening by farmers, slaughterhouses, meatprocessors, fisheries etc. In contrast to conventional plate tests, reliable results are available in less than four hours. Major applications are the analysis of:

Additional application protocols are available for: liver, kidney, cattle/pork urine and poultry/pork feed.

(For urine, Premi®Test Urine is required for pre-treatment)

Test kits and equipment

Premi®Test is available as:

<u>Premi®Test 100</u> (Art. No. R3900): 100 test ampoules

<u>Premi®Test 25</u> (Art. No. R3925): 25 test ampoules

or

<u>Premi®Test Starter Kit</u> (ZPT-2000): Contains meatpress, incubator, timer, scissors and briefcase

<u>Multipress</u> (ZPT-2012): Allows to squeeze 12 samples at once

<u>Premi®Test Urine</u> (R3921): Reagent for pre-treatment of urine samples

How to use Premi®Test for the detection of antibiotic residues in meat

Test procedure

Cut off the required number of ampoules. Use one additional ampoule for the negative control, which is a sample containing no antibiotics.

Cut the meat into pieces of approx. 2 cm³ and put one piece into the meatpress. Increase pressure slowly and hold constant until approx. 200 µl of meatjuice is obtained.

Wash the ampoules twice with demineralized water. Remove excessive water by turning the ampoules upside down on a piece of soaking paper, but do not tap the ampoules.

Close the ampoules with the supplied perforated foil.

Pipette 100 µl of the meatjuice into the ampoule without distortion of the agar. The included syringe is designed to take-up automatically the required volume.

Put the ampoules into the incubator at 64 °C.

Incubate ampoules for 20 minutes at room temperature. Switch on the Premi®Test Incubator for temperature stabilization at 64 °C.

Read the results of the samples, when the negative control shows a clear colour change into yellow (approx. after 3 h).

Determination of results

Compare the colour of the sample ampoules to the colour of the negative control ampoule. If the sample ampoule remain purple or if the colour deviate from the colour of the negative control ampoule, the sample potentially contains antibiotic residues and the results have to be verfified by the official reference method.

Premi®Test detection limits in different animal food products

Substances	en				đ	Substances	en				đ
	Chick	Pork	Beef	Eggs	Shrim		Chick	Pork	Beef	Eggs	Shrim
β-lactams						Aminoglycosides					
Amoxicillin	5	5	5	5	15	Gentamicin	100	100	100	100	
Ampicillin	5	5	5	5		Streptomycin	1500	1500	3000	1000	
Penicillin-G	2.5	2.5	2.5	2.5	5	Neomycine	300	300	300	300	200
Cloxacillin		>100		100		Spectinomycine			5000		
Oxacillin		100				Chinolone					
Dicloxacillin						Oxolin acid					>10000
Cephalosporins						Enrofloxacin	>600	>600	>600		
Cefquinome	75	100	100			Flumequine	>100	>100	>100		
Ceftiofur	100	200	100	400		Polypeptide					
Macrolides						Virginiamycin	500	500	500		
Tylosin	50	25 - 50	50	50		Bacitracin	500	500	500		
Erythromycin	100	100	100	50	100	Zn-bacitracin	1250				
Lincomycin	100	100	100			Colistin	>1000				
Tilmicosin	50	50	50			lonophores					
Spiramycin	1000	1000	1000			Salinomycin	1000				
Tetracyclins						Monensin	1250				
Chlortetracycline	100	100	100	600	1000	Lasalocid	10000				
Oxytetracycline	100	100	100	400	100	Oligosaccharides					
Doxycycline	100	100	100	200		Avilamycin	>5000				
Tetracycline		50		200		Andere					
Demeclocycline		50				Florfenicol	100	100	100		5000
Sulfonamides						Chloramphenicol	2500	2500	2500	2500	
Sulfamethazine	75	50-100	100	25		Trimethoprim	50				
Sulfadiazine	75	50-75	75	25	50	Narasin	1250				
Sulfamethizole		50-100				Amprolium	>2000				
Sulfguanidine	<200	150	<200			Phosphomycine	>1500				
Sulfadimethoxine		25 - 50	<100		50	Ronidazole					>5000
Sulfapyridine	<50	50	<100			Furazolidone	>1500				
Sulfamethoxypyridine	<100	25									
Sulfisoxazole	<100	25									
Sulfathiazole	<100	25									
Sulfachloropyridazine	<100	25									
Sulfamerazine	<100	25	<100								
Sulfanilamidee	<100	150									
Sulfaquinoxaline	<100	50	<50								
Sulfametiozole	<100		<50								
Sulfamethoxazole				25							

All detection limits are given in $\mu g/kg = ppb$.

Detection limits for other matrices are available on request.